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1 Free groups

1.1 De�nition

Let S be a (possibly in�nite) set, which we call the "alphabet". Elements of S are called "letters". We
add for each element s ∈ S a letter s̄, and denote S̄ the set {s̄ | s ∈ S}. We take the convention that
¯̄s = s.

De�nition 1.1: A word in S is a �nite sequence u1 . . . un of elements of S ∪ S̄. A word is said to be
reduced if for every i = 1, . . . , n − 1, we have ui 6= ūi. If w = u1 . . . un, w

′ = v1 . . . vm are two words,
their concatenation is u1 . . . unv1 . . . vm. We denote F (S) the set of reduced words on S.

Remark 1.2: The concatenation of two reduced words w = u1 . . . un, w
′ = v1 . . . vm is not necessarily

reduced - it could be that un = v̄1. In this case, we erase the pair unv1 to get the strictly smaller word
u1 . . . un−1v2 . . . vm. Repeat if necessary until you get a reduced word: this reduced word is denoted ww′

and is called the concatenation-reduction of w with w′.
Note that we have ww′ = u1(. . . (un−1(un(v1 . . . vm)))).

Lemma 1.3: The set F (S) together with the concatenation reduction operation is a group.

Proof. The hard thing to check is associativity. We use a trick: to each element u ∈ S∪ S̄, we associate
the permutation Lu of F (S) given by Lu(w) = uw. Note that Lū ◦ Lu = Lu ◦ Lū = Id.

More generally, if g ∈ F (S) with g = u1 . . . un we de�ne Lg = Lu1
◦ . . . ◦ Lun

. This gives a map
L : F (S)→ S(F (S)).

This map is injective: if v1 6= v2, then Lv1(ε) = v1 6= v2 = Lv2(ε) so Lv1 6= Lv2 .
Now if u ∈ S ∪ S̄, it is easy to check that Lu ◦ Lg = Lug (if u1 6= ū this is immediate, if u1 = ū we

get ug = u2 . . . un and Lu ◦ Lg = Lu ◦ Lū ◦ Lu2 ◦ . . . ◦ Lun - since Lū = L−1
u we are done).

More generally if g′ ∈ F (S) with g′ = v1 . . . vm we have Lg′g = Lg′◦Lg. Indeed, gg = v1(. . . (vm−1(vmg)))
so

Lgg′ = Lv1 ◦ (. . . ◦ (Lvm−1
◦ (Lvm ◦ Lg))) = Lg′ ◦ Lg

Since ◦ is associative in S(F (S)), the identity Lg′g = Lg′ ◦Lg immediately gives us associativity of
concatenation-reduction in F (S).

The neutral element for concatenation-reduction is the empty sequence e. The inverse of g =
u1 . . . un is ūn . . . ū1. This �nishes the proof.

Notation: Sometimes instead of s̄ we write s−1 and instead of S̄ we write S−1.

De�nition 1.4: We call F (S) the free group on S.

Lemma 1.5: (Universal property) Let S be a set, and F (S) the free group on S. For any group G,
and any choice of elements (gs)s∈S, there is a unique morphism h : F (S)→ G such that h(s) = gs for
all s ∈ S.
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Proof. If h is to be a morphism, we must have h(s̄) = h(s−1) = h(s)−1 = g−1
s . We denote g−1

s by
gs̄. Similarly, for any reduced word s1 . . . sn, we must have h(s1 . . . sn) = gs1 · . . . · gsn . This proves
uniqueness of h.

Let us now see that it is a morphism: let w = s1 . . . sn and w′ = t1 . . . tm be reduced words. Suppose
that j is such that ww′ = s1 . . . sn−jtj+1 . . . tm - in particular, for each 0 ≤ i < j we have sn−i = t̄i+1.
Then by de�nition h(ww′) = gs1 · . . . · gsn−j

· gtj+1
· . . . · gtm . On the other hand,

h(w) = gs1 · . . . · gsn = gs1 · . . . · gsn−j · gsn−j+1 · . . . · gsn−j

h(w′) = gt1 · . . . · gtm = gs̄n · . . . · gs̄n−j+1 · gtj+1 · . . . · gtm
so we get equality.

De�nition 1.6: We say the reduced word v in S represents the element h(v). In other words, the
element represented by v = s1 . . . sn is gs1 · . . . · gsn

We often blur the distinction between s and gs, and denote the latter simply by s, so that the
reduced word v = s1 . . . sn (which is an element in F (S)) represents the element s1 . . . sn (of G!!). We
will even drop the · to make things even more confusing...

Remark 1.7: The morphism h is surjective i� Ŝ = {gs | s ∈ S} is a generating set for G. The
morphism h is injective i� no non trivial reduced word represents the identity element.

De�nition 1.8: If the morphism h : F (S)→ G is an isomorphism, we say that G is free on {gs | s ∈
S}.
Remark 1.9: G is free on {gs | s ∈ S} i� Ŝ generates G and no nontrivial reduced word on S
represents the identity element.

Remark 1.10: In fact there are three possible ways to de�ne free groups

1. The constructive way: given a set S, build F (S) just as we did.

2. By the universal property: category theory tells us that in the category of groups there is a unique
object which satis�es the property given in Lemma 1.5, we call it the free group.

3. The botanical point of view: if you �nd in nature a group G which admits a generating set S such
that no nontrivial reduced products in the elements of S and their inverses is trivial, call it free
on S.

1.2 Bases and rank

The free group F (S) is of course free on S - the morphism given by Lemma 1.5 is just the identity.
But there are many other sets T ⊆ F (S) such that F (S) is free on T .

Example 1.11: Let S = {a, b}. Let T = {α, β} and let h : F (T ) → F (S) be the unique morphism
such that h(α) = a and h(β) = ba.

By universal property of F (S) there is a morphism f : F (S)→ F (T ) given by a 7→ α and b 7→ βα−1.
Now g ◦ f : F (S)→ F (S) �xes both a and b - by uniqueness in the universal property, it must be the
identity. Similarly f ◦ g = Id so we see that f, g are in fact isomorphisms.

We conclude that F (S) is free on {a, ab}.
De�nition 1.12: If G is free on a set S ⊆ G we call S a basis of G.

Remark 1.13: By Remark 1.9, S is a basis if it generates and there is no non trivial relation between
the elements - this should remind you of the de�nition of the basis of a vector space.

Lemma 1.14: Let S, S′ be sets. Then F (S) is isomorphic to F (S′) i� |S| = |S′|.
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Proof. Suppose |S| = |S′|. Take h extending S → S′ bijection and h′ extending S′ → S inverse
bijection, then h′ ◦ h is a group morphism F (S) → F (S) which extends the identity on S: by the
Lemma this must be the identity (using uniqueness), hence h and h′ are isomorphisms.

Other direction: count the number of morphisms G → Z/2: each of the 2|S| choices of image for
S gives a unique morphism by universal property, and every morphism is obtained in this way. Thus
2|S| morphisms. If G isomorphic to G′, there are exactly as many morphisms G′ → Z/2 as G→ Z/2,
hence |S| = |S′| (for in�nite cardinals this requires the generalized continuum hypothesis or remark
that card of G equals that of |S|).

Corollary 1.15: Any two bases of G have the same cardinality.

De�nition 1.16: The rank of a free group is the cardinality of a basis.

Warning. Bases of free groups are not as well-behaved as bases of vector spaces.

1. Not every group admits a basis, only free groups!

2. Not every generating set contains a basis.

3. If S is a subset of G which is free (i.e. no nontrivial reduced word on S represents the identity
element) but not generating, it cannot in general be extended to a basis of G.

4. A free group of rank k may have free subgroups of rank n > k, indeed of in�nite rank!

1.3 Free factors

De�nition 1.17: Let G be a free group, and H a subgroup of G. We say H is a free factor of G if
there exists a basis S = s1, . . . , sn of G such that H = 〈s1, . . . , sk〉 for some k ≤ n.

Note that in this case, H is free on {s1, . . . , sk} - by de�nition it generates H, and no nontrivial
word on the set SH represents the identity element.

1.4 Some questions on free groups

Question 1: Given a set S ⊆ G, is there an algorithm to decide whether S is a basis? or whether it
can be extended to a basis?

We will see in Corollary 5.13 that in fact any subgroup of a free group is free.

Question 2: Let H be a �nitely generated subgroup of a free group G which is generated by a �nite
set of elements of G.

1. Is there an algorithm to �nd a basis for H from these elements?

2. Is there an algorithm which given an element h decides whether h ∈ H?

3. Can we tell whether H is normal in G?

4. Can we tell whether H has �nite index in G?

5. Can we tell whether H is a free factor in G?

Some more questions

Question 3: If H,K are �nitely generated subgroups of F , is H∩K �nitely generated? Can we bound
its rank?
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2 Graphs

We recall de�nitions of a graph to �x notations, but we will use freely notions and results from
elementary graph theory.

De�nition 2.1: A graph Γ is given by two sets E, V (edges and vertices), and two functions ·̄ : E → E
and ι : E → V such that ¯̄e = e and ē 6= e. The vertex ι(e) is called the initial vertex of e, we de�ne
τ : E → V by τ(e) = ι(ē), we call τ(e) the terminal vertex of e. An orientation is a choice of subset
E+ of E such that for any e ∈ E, |E+ ∩ {e, ē}| = 1.

De�nition 2.2: The geometric realization of a graph Γ is the one dimensional CW-complex Γ̂ with 0-
skeleton X0 = V and collection of 1-cells given by {[0, 1]×{e} | e ∈ E+} (where E+ is an orientation),
with attaching maps φe : {0, 1} → X0 given by φe(0) = ι(e) and φe(1) = ι(ē). In other words, Γ̂ is the
topological space obtained by quotienting V t

⊔
e∈E+ [0, 1]×{e} by the equivalence relation generated by

• (0, e) ∼ ι(e);

• (1, e) ∼ τ(e)

(with the quotient topology)

Example 2.3: Consider the n-arc graph An. Then Ân is homeomorphic to [0, n]. Or to [0, 1].

De�nition 2.4: A maps between graphs is a pair of functions V → V,E → E preserving the structure.
(We usually use the same letter, say f , to denote both graphs).

Remark 2.5: Given f : Γ→ ∆ a map of graphs, and E+(∆) an orientation for ∆, the set {e ∈ E(Γ) |
f(e) ∈ E+(∆)} an orientation of Gamma (if f(e) ∈ E+(∆), then f(ē) = f(e) is not in E+(∆), and
vice versa).

Remark 2.6: If f : Γ→ ∆ is a map between graphs, there is a continuous map f̂ : Γ̂→ ∆̂ between the
geometric realization of the graphs sending the interval representing an edge e in Γ homeomorphically
onto the interval representing f(e) in ˆDelta.

Unless stated otherwise, all graphs are �nite.

3 Paths and fundamental groups

De�nition 3.1: Let v be a vertex in a graph Γ. A path p at v of length n = |p| is a �nite (possibly
empty) sequence e1, . . . , en in E(Γ) such that ι(e1) = v and ι(ei+1) = τ(ei) for all i ∈ {1, . . . , n − 1}.
The initial vertex of p is ι(e1) = v, its terminal vertex is τ(en). If they are the same call p a circuit.
If the sequence is empty call p the constant path at v.

If p, q paths such that initial vertex of q is �nal vertex of p we can de�ne the concatenation pq of p
and q, it has length |pq| = |p|+ |q|.
Remark 3.2: A path of length n can be thought of as a graph map An → Γ.

De�nition 3.3: Geometric realization of a path = continuous map [0, n]→ Γ̂ realizing the graph map
An → Γ.

De�nition 3.4: A round trip is a path of the form e, ē. If p contains a round trip, we can erase it to
obtain a path p′ of length |p′| = |p| − 2, we say that p′ is obtained from p by elementary reduction. If
p doesn't contain any round trip say it is reduced.

Remark 3.5: Any edge path can be transformed into a reduced edge path.

De�nition 3.6: The equivalence relation on paths generated by elementary reduction is called homo-
topy and denoted by '.
Remark 3.7: Every path is homotopic to a reduced path.
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Exercise 3.8: If two paths are homotopic in the combinatorial sense above, any two geometric real-
izations of the paths are homotopic relative endpoints in the usual topological sense.

Lemma 3.9: Concatenation of paths is compatible with homotopy, that is, if p ' p′ and q ' q′ then
pq ∼ p′q′.

Proof. Immediate - if p = e1 . . . en elementary reduces to p′ = e1 . . . ei−1ei+2 . . . en, then pq =
e1 . . . enf1 . . . fm elementary reduces to p′q.

Denote by π(Γ) the set of homotopy equivalence of paths in Γ, see concatenation as a (partially
de�ned) operation on π(Γ) with neutral elements the constant paths.

Lemma 3.10: This operation is associative (concatenation of paths is associative). For any element
[p] ∈ π(Γ) where p = e1 . . . en, there is an inverse [p]−1 = [p̄] where p̄ is the path ēn . . . ē1.

De�nition 3.11: The subset π1(Γ, v) of π(Γ) of homotopy classes of paths starting and ending at a
�xed vertex v forms a group under this operation, called the (combinatorial) fundamental group of Γ
based at v.

Example 3.12: 1. If Γ is a tree, there is a unique reduced path between any two given points
(standard result of graph theory). In particular, there is a unique reduced path between v and
itself - the constant path. This implies that every circuit is homotopic to the constant path at v,
so π1(Γ) is trivial.

2. If Γ = Cn is the cycle on n edges, any reduced circuit is homotopic to a power of the circuit
p = e1 . . . en. Two di�erent powers are not homotopic - this is harder to prove formally, but we
will soon prove an even stronger result - see Theorem 3.16. Thus π1(Cn) ' Z.

Lemma 3.13: If f : Γ → ∆ is a graph map, the map f∗ : π1(Γ, v) → π1(∆, f(v)) given by
f([e1 . . . en]) = [f(e1) . . . f(en)] is well de�ned, and it is a group homomorphism.

Proof. If f : Γ → ∆ is a graph map, the images by f of two homotopic paths are homotopic, so f∗ is
well de�ned. To se it is a morphism is immediate.

Remark 3.14: It is possible to show that the combinatorial fundamental group we de�ned is isomorphic
to the topological fundamental group of the geometric realization via the obvious map.

It requires some covering theory though, and we haven't talked about that yet. It also requires to
show that any topological path is homotopy equivalent to the geometric realization of a path in the sense
above.

Remark 3.15: It is a standard result from graph theory that any connected graph admits maximal
subtrees (via Zorn's lemma). A maximal subtree contains all the vertices of the graph.

Proposition 3.16: Let Γ be a connected graph, let T be a maximal subtree in Γ and let v be a vertex
of Γ. Let {ei, ēi}i∈I be the edges of Γ − T , and for each i let pi, qi be the unique path in T from v to
ι(ei), τ(ei) respectively.

The fundamental group π1(Γ, v) is free on the set {[pieiqi] | i = 1, . . . , k}.

Proof. Let αi = [pieiqi] ∈ π1(Γ, v). We consider F(S) the free group on S = {si | i ∈ I}, and we de�ne
a homomorphism h : F(S) → π1(Γ, v) by setting h(si) = αi (universal property of the free group).
We show h is surjective: let p be a circuit in Γ based at v: we prove by induction on |p| that p is
homotopic to a circuit which is the concatenation of circuits of the form pieiqi. Write p = p′elr or
p = p′ēlr where r is a path contained entirely in T , and l ∈ I. Clearly p is homotopic to p′p̄lplelqlq̄lr
(respectively p′plp̄lēlq̄lqlr). By induction hypothesis, p′ is homotopic to a product of circuits of the
form pieiqi, p̄iēiq̄i.

Now de�ne f : π1(Γ, v)→ F(S) as follows: if p is a circuit based at v, consider the �nite sequence
eε1i1 , . . . , e

εt
it

of edges of Γ − T appearing in p (where εi ∈ {±1} and e−1
i denotes ēi). We let f([p]) =

sε1i1 . . . s
εt
it

(thought of as a product in F(S)). To see this is well de�ned, suppose p is elementary
homotopic to p via the removal of a subsequence eē. If e is in T , clearly f([p]) = f([p′]), if e is not in
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T then f([p′]) can be obtained from f([p]) by erasing a subproduct ss−1, but this means that in the
free group f([p]) = f([p′]). The map f clearly preserves concatenation so it is a morphism.

It is easy to see that f ◦ h = Id. Since h is surjective, this means f, h are isomorphisms, which
proves the result.

Remark 3.17: If we know that the combinatorial fundamental group is isomorphic to the topological
fundamental group, we can use the fact that the quotient map Γ → Γ/T which collapses the maximal
subtree to a point is a homotopy equivalence, then show that the fundamental group of a graph with
one vertex and k loops is free on the elements corresponding to the k loops (note that this is exactly
the form of Γ/T ).

Corollary 3.18: Let v be a vertex of the graph Γ. Any circuit p in Γ based at v is homotopic to a
unique reduced path.

Proof. If p is reduced, note that it is uniquely de�ned by the (ordered) list of the edges of Γ − T it
contains, and moreover, this list is reduced (i.e. doesn't contain eē). Now if p, p′ are homotopic, then
f([p]) = f([p′]), which means that this list of edges is the same for p and p′ (there is a unique reduced
word representing any element of the free group).

Example 3.19: Consider the free group F(a1, . . . , ak) on k letters. We think of it as the fundamental
group of the rose graph Rk with k petals and unique vertex u.

If H is a subgroup of F(a1, . . . , ak) generated by elements h1, . . . , hl, there is a unique homomor-
phism from the free group F(s1, . . . , sl) on l elements to F(a1, . . . , ak) which sends si on hi.

We build a graph of maps f as follows: take the graph Rl with central vertex v, and subdivide the
i-th petal in l(hi) edges (where l(hi) denotes the length of hi as a reduced word) - call ∆ the resulting
graph. Note that π1(∆, v) is still free of rank l - identify it with the group F(s1, . . . , sl).

De�ne the map f : ∆ → Rk to send the i-th petal to the reduced circuit corresponding to hi.
Then the induced morphism f∗ : π1(∆, v) = F(s1, . . . , sl) → F(a1, . . . , ak) = π1(Rk, u) is exactly the
homomorphism above.

In particular, H = f∗(F(s1, . . . , sl)).

4 Immersions, covering and foldings

De�nition 4.1: Let v be a vertex in a graph Γ. The star of v in Γ is St(v,Γ) = {e ∈ E(Γ) | ι(e) = v}.
A map of graphs f : Γ → ∆ induces a map fv : St(v,Γ) → St(f(v),∆). The map f is called an
immersion if for any vertex v, fv is injective. It is called a covering if for any vertex v, fv : St(v,Γ)→
St(f(v),∆) is bijective.

Example 4.2: Non injective immersion of a circle. Covering: identity, several copies, connected
nontrivial example.

Remark 4.3: The image by an immersion of a reduced path is a reduced path.

De�nition 4.4: If e, e′ ∈ St(v) for some vertex v are such that e′ 6= ē, the pair (e, e′) is called
admissible. The graph Γ/[e = e′] obtained from Γ by identifying e with e′, τ(e) with τ(e′) and ē with
ē′ is called the folding of (e, e′). The quotient map Γ→ Γ/[e = e′] is called the folding map.

Remark 4.5: There are two kinds of foldings - if τ(e) 6= e′, and if τ(e) = τ(e′).
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Remark 4.6: If f : Γ → ∆ is a map of graphs, and e, e′ are edges of Γ such that ι(e) = ι(e′) and
f(e) = f(e′) then f factors through the folding map Γ→ Γ/[e = e′].

Proposition 4.7: Any graph map between �nite graphs can be written as composition of foldings plus
one immersion.

Proof. Let f : Γ→ ∆ be a graph map. If f is an immersion, we are done. If not, it identi�es two edges
e, e′ with ι(e) = ι(e′), so it factors through the folding map Γ → Γ/[e = e′]. Repeat. This terminates
since folding reduces the number of edges in a graph.

Lemma 4.8: If f : Γ → ∆ is a folding map, the induced morphism f∗ : π1(Γ, u) → π1(∆, f(u)) is
surjective.

Proof. Let ∆ = Γ/[e = e′] where ι(e) = ι(e′). Let p = e1 . . . em be a reduced circuit at f(u). We
consider successively the edges of p. If ei 6= f(e) and ei 6= f(e), there is a unique edge ẽi such that
f(ẽi) = ei, and if ei = f(e) or ei = f(e) there are two possible choices of preimages.

If τ(e) = τ(e′), any choice of edges ẽ1 . . . ẽm such that f(ẽi) = ei will form a circuit p̃ at u whose
image by f is p, proving the result.

Thus we assume now that τ(e) = τ(e′). Let i be an index for which ei ∈ {f(e), f(e)}.
If ei = f(e), consider the edge ei+1 : since p is reduced, ei+1 6= f(e). Hence there is a unique edge

ẽi+1 such that f(ẽi+1) = ei+1. Now choose ẽi ∈ {e, e′} such that ι(ẽi+k) = τ(ẽi+k−1).
If ei = f(e), we consider τ(ẽi−1): it must be equal either to ι(ē) or to ι(ē′). In the �rst case we set

ẽi = ē, in the second case ẽi = ē′.
It is easy to check that p̃ = ẽ1 . . . ẽm is a circuit based at u.

Corollary 4.9: Let f : Γ → ∆ be a map between �nite graphs, write it as a composition of foldings
f1, . . . , fr and an immersion j : Γ′ → ∆. Then f∗(Γ) = f∗(Γ

′).

Proof. We have f = j ◦ fr ◦ . . . ◦ f1, so f∗ = j∗ ◦ (fr)∗ ◦ . . . ◦ (f1)∗. Since all the (fi)∗ are surjective,
Im(f∗) = Im(j∗).

Example 4.10: In Example 3.19, where H = 〈h1, . . . , hl〉 ≤ F(a1, . . . , ak), the map f : ∆ → Rk can
be factored through foldings as above to get an immersion f ′ of a graph ∆′ = ∆H into Rk. We have
f ′(∆H) = f(∆) so this immersion "represents" H, in the sense that π1(f ′(∆H), f ′(v′)) = H.

In fact, we will see in the sequel that the morphisms induced by immersions are injective on the
fundamental group, so the graph ∆H has fundamental group isomorphic to H. This will help us for
example to �nd a basis for H.

Example 4.11: F = F(a, b) and H = 〈a3b, ābab, a2b̄a〉

7



5 Lifting lemmas

Again we present here the combinatorial theory to be self contained, though if we thought of the
geometric realizations we could simply apply general covering theory.

5.1 Path and homotopy lifting

Lemma 5.1: (Path lifting lemma) If f : Γ→ ∆ is an immersion, v a vertex in Γ and p a path in ∆
with initial vertex f(v) then there exists at most one path p̃ in Γ with initial vertex v.

If f is a covering, such a path always exists.

Proof. Suppose p = e1 . . . em. By injectivity of fv, there is at most one edge ẽ1 in St(v,Γ) such that
fv(ẽ1) = e1. Moreover, f(τ(ẽ1)) = τ(e)1. Now there is at most one edge in St(τ(ẽ1)) such that
f(ẽ2) = e2, and so on. The path p̃ = 1̃ . . . ẽm, if it exists, is the only possible lift.

If star maps are known to be also surjective, the lift is easily seen to exist.

Lemma 5.2: (Homotopy lifting lemma) If f : Γ→ ∆ is an immersion, v a vertex in Γ and p, q paths
in ∆ with initial vertex f(v). If p, q are homotopic then two lifts p̃, q̃ with initial vertex v are homotopic.

Proof. We show this in the case where q = e1, . . . , en is obtained from p = e1, . . . , ei, e, ē, ei+1, . . . en
by an elementary reduction which consists in erasing the round trip eē in p. (The general case then
follows easily).

In p̃, the lift ẽ is followed by an edge ẽ′ with initial vertex τ(ẽ), which maps by f onto ē. But f is a
graph map, so f(ẽ) = f(ẽ) = ē, and on the other hand ẽ has initial vertex τ ẽ just like e′. By injectivity
of fτ(ẽ), we must have e′ = ẽ. Thus p̃ contains the round trip ẽẽ.

If we erase this round-trip, it is easy to see that we get a lift of q, which by uniqueness must be
q̃.

Corollary 5.3: If f : ∆→ Γ is an immersion the morphism f∗ : π1(∆, u)→ π1(Γ, f(u)) is injective.

Proof. Suppose f∗([p]) = [f(p)] = [f(q)] = f∗([q]), this means f(p) and f(q) are homotopic. Now
that p and q are lifts of f(p) and f(q) at u, so by homotopy lifting, they are also homotopic - hence
[p] = [q].

An immediate and quite amazing corollary is the following:

Corollary 5.4: Any �nitely generated subgroup of a �nitely generated free group is free.

Note that this is also true if we drop �nite generatedness...

Proof. Let H be the subgroup of F(a1, . . . , ak) generated by h1, . . . , hl. By the previous sections,
we know how to �nd a graph ∆H and an immersion f : ∆H → Rk such that π1(f ′(∆H), v) =
f ′∗(π1(∆H , v)) = H. But now we know that f∗ is injective, so it gives an isomorphism between
π1(∆H , v) and H. Since fundamental groups of graphs are free, we get that H is free.

5.2 Reading o� a basis

In fact, this gives us more. We know how to �nd a basis for π1(∆H , u): pick a maximal subtree, and
take a circuit based at u for each pair e, ē of edges which do not lie in the maximal subtree. The image
of these circuits by f∗ gives a basis for H.

Example 5.5: F = F(a, b) and H = 〈a3b, ābab, a2b̄a〉. If we choose a spanning tree for ∆H , we get a
basis of H:
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gives us a basis {a3b, b̄āb̄a}. We can choose a di�erent spanning trees to get a di�erent basis, for
example {a2b̄a, ābab}.

5.3 Membership problem

Recall we asked the following question:

Question 4: Given a �nite generating set {h1, . . . , hl} of a subgroup H = 〈h1, . . . , hl〉 of F(a1, . . . , ak),
and an element w ∈ F(a1, . . . , ak), can we decide whether w ∈ H?

Lemma 5.6: If f : ∆ → Γ is an immersion, the image in π1(Γ, f(u)) of π1(∆, u) by f∗ is precisely
the set of homotopy classes of reduced circuits based at f(u) which admit lifts in (∆, u), and whose lifts
are circuits at u.

Proof. Consider a reduced circuit p in Γ based at f(u). Then [p] is in the image of f∗ i� there exists a
circuit p̂ in ∆ based at u such that [f(p̂)] = [p].

Suppose there exists p̂ such that f(p̂) = p, then f∗([p̂]) = [p] so [p] is in the image of f∗.
Suppose now conversely that [p] is in the image of f∗ - there exists a circuit p̂ which wlog we may

assume reduced, such that f∗([p̂]) = [f(p̂)] = [p]. Since f is an immersion, f(p̂) is also reduced. Since
it is homotopic to the reduced circuit p, they must in fact be equal.

Note that if we drop the assumption that p is reduced, it may be that p doesn't have a lift.
Now this gives us a way to answer the question. If ∆H is a graph and f : ∆H → Rk is an immersion

representing H, we see that w is in H i� the circuit in Rk corresponding to w lifts to a circuit in ∆H .

Example 5.7: F = F(a, b) and H = 〈a3b, ābab, a2b̄a〉 we had ∆H :

Does w = a belong to H? What about w = a2b̄a? And w = b?

5.4 More lifting. Existence of coverings

A way of interpreting the path lifting lemma: draw the commutative diagram with An. Here is a
generalization.

Lemma 5.8: (General lifting lemma) Suppose f : Γ → ∆ is a covering, g : Θ → ∆ a map of graphs
with Θ connected, and u, v vertices of Γ,Θ such that g(v) = f(u).

There exists g̃ : Θ→ Γ such that f ◦ g̃ = g i� g∗(π1(Θ, v)) ⊆ f∗(π1(Γ, u)). Moreover, if g̃ exists, it
is unique.

Proof. De�ne g̃ on a vertex w by: 1. choosing a path p from v to w (Θ connected), 2. lifting the path
g(p) to a path p̃ with initial point u (use path lifting lemma), 3. setting g̃(w) to be the endpoint of
this lift.

By de�nition f ◦ g̃(w) = g(w).
Note that if g̃ exists, then g̃(p) is a lift of g(p) starting at u. By uniqueness of lifts, g̃(w) must be

the endpoint of this unique lift - this proves uniqueness.
To see this is well de�ned, suppose q is another path from v to w. Then pq̄ is a circuit in Θ. By

hypothesis g∗([pq̄]) = f∗([r]) for some circuit r based at u. Now f(r) is homotopic to g(pq̄) so by the
homotopy lifting lemma r and the unique lift of g(pq̄) are homotopic, in particular they have the same
endpoints. Now by uniqueness, the lift of g(pq̄) is of the form p̃ˆ̄q where p̃ is the unique lift of g(p)
starting at u and ˆ̄q is the unique lift of q̄ starting at the terminal point of p̃. But by uniqueness of the
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lift of g(pq̄), we get that ˆ̄q ends at u. This implies that ¯̄̂q is the unique lift of q starting at u, in other
words, q̃. Hence q̃ and p̃ end at the same point, so g̃ is well de�ned.

Same for de�nition on edges.

Lemma 5.9: (Existence of universal coverings) If ∆ is a connected graph, and v a vertex, there exists
a covering f : ∆̃→ ∆ with ∆̃ a tree.

Example 5.10: Example of F2. See intuition for the general case.

Proof. We de�ne ∆̃ as follows: its vertex set is {[p] | p a path in ∆ starting at v}, its edge set is
{([p], e) | e ∈ E(∆) with τ(p) = ι(e)} where ([p], e) has initial vertex [p], and ([p], e) = ([pe], ē) (this is
indeed an involution).

The covering map f is de�ned by f([p]) = τ(p) and f(([p], e)) = e. It is easy to see it is indeed a
covering.

To see that ∆̃ is a tree, let ([p1], e1), . . . , ([pn], en) be a reduced non empty circuit in ∆̃: we
have [pi+1] = [piei] for each i, so we get [pj ] = [p1e1 . . . ej−1]. Moreover, we have [pnen] = [p1],
so we get [p1e1 . . . en] = [p1]. We may assume p1 is reduced, so erasing roundtrips in p1e1 . . . en
should give us p1. Note that there are no round trips in e1 . . . en, otherwise this gives a round trip in
([p1], e1), . . . , ([pn], en). So the only possibility is that the last edge of p1 is ē1 - but this implies that
en = e1. Write e1 . . . en = e1 . . . ej−1ej . . . erej−1 . . . e1 such that p = p′ej−1 . . . e1, and the last edge
in p′ is distinct from ej . The path p′ej . . . erej−1 . . . e1 is reduced, and it is homotopic to p - we must
have that ej . . . er is empty, but this implies that there is a round trip in e1 . . . en, a contradiction.

In Exercise set 2, you will prove that any two such coverings are isomorphic.

Proposition 5.11: The fundamental group π1(∆, u) acts on ∆̃ by [q]·[p] = [qp] for [q] ∈ π1(∆, u) and [p] ∈
V (∆̃) and [q] · ([p], e) = ([qp], e) for ([p], e) ∈ E(∆̃).

Moreover, we have f([q] · [p]) = f([p]) for all [p] ∈ V (∆̃) and f([q] · ([p], e)) = f(([p], e)) for all
([p], e) ∈ E(∆̃).

Lemma 5.12: (Existence of coverings) If ∆ is a connected graph, v a vertex and H a subgroup of
π1(∆, v), there exists a covering f : Γ→ ∆ with Γ connected with a vertex u such that f(u) = v, such
that f∗(π1(Γ, u)) = H.

Any such two coverings are isomorphic.
The index of H in π1(∆, v) is the cardinality of f−1

H (v).

The proof I gave in the lecture was slightly di�erent, I will try to update this soon.

Proof. We de�ne an equivalence relation ∼H by saying that two points [p], [p′] in the universal cover
∆̃ de�ned above are equivalent if p, p′ have the same terminal point and [pp̄′] ∈ H, that is, . Two
edges ([p], e) and ([p′], e′) are equivalent if e = e′ and [p] ∼H [p′]. Let ∆H be the quotient of ∆̃ by this
equivalence relation. Note that if two vertices (respectively edges) of ∆̃ are equivalent, they have the
same image under f : ∆̃ → ∆, hence f factors through the quotient g : ∆̃ → ∆H as f = fH ◦ g. It is
easy to se that fH is a covering.

Recall that the basepoint u in ∆̃ is the homotopy class of the constant path at v, denoted by 1v.
Thus the basepoint g(u) in ∆H is the equivalence class in ∼H of u = [1v]. A circuit p in ∆ based
at v lifts in ∆̃ to a path starting at u whose endpoint is [p], hence it lifts in ∆H to a path starting
at g(u) whose endpoint is g([p]), i.e. the equivalence class of [p] under ∼H . This is equal to g(u) i�
[p] ∈ H. The image in π1(∆, v) of π1(∆H , g(u)) is precisely the set of circuits based at v whose lifts in
(∆H , g(u)) are also circuits, thus we just proved that this image is exactly H.

The preimage of v in ∆̃ is {[p] | p a circuit based at v} which is in bijection with π1(∆, v), so its
preimage in ∆̃ is the quotient of this set by the action of H given by h · [p] = [qhp] where h = [qh].
Thus it is in bijection with the set of cosets of H in π1(∆, v).

We can now generalize Corollary 5.4

Corollary 5.13: Any subgroup of a free group is free.
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Proof. Let F be a free group on a set S, and let H be a subgroup of F. See F as the fundamental group
of the rose R on |S| petals. By the previous proposition, there exists a covering (∆H , u) → (R, v)
such that f∗(π1(∆H , u)) = H. By Proposition 5.3, we get that π1(∆H , u) is isomorphic to H. But
π1(∆H , u) is the fundamental group of a graph, hence it is free.

6 Core graph associated to a �nitely generated subgroup

Recall our algorithm to �nd a basis for a fg subgroup given by a �nite set of generators.

Question 5: Does the ultimate graph we get depend on how we choose to fold?

We will see it doesn't. For this, we give the following de�nition.

De�nition 6.1: Let Y = Rk be the rose on k petals, whose fundamental group we identify to F(a1, . . . , ak).
Let H = 〈h1, . . . , hl〉. Let fH : (YH , vH) → (Y, v) be the covering corresponding to H. The core graph
ΓH of YH is the union of all the reduced circuits at vH .

Remark 6.2: This is equivalent to saying that ΓH is the union of images of �nitely many reduced
edge paths circuits representing generators of H.

We want to prove that the core ΓH is exactly the graph ∆H we obtained by folding the rose with
l petals, and that the immersion f |∆H

: ∆H → Rk is exactly the restriction of the covering map
YH → Rk to ΓH . For this, the following lemma will be useful:

Lemma 6.3: Let j : ∆→ Γ be an immersion between connected graphs. Suppose that j∗ : π1(∆, u)→
π1(Γ, j(u)) is surjective. Then j must be injective.

Proof. Suppose not. Then there exists v, w be distinct vertices of ∆ such that j(v) = j(w). If p is a
reduced path in ∆ between v and w, we may assume up to changing v, w that no two vertices on p
have the same image. Now j(p) is a reduced circuit in Γ, it is even cyclically reduced (its �rst and last
edge are not inverses one of the other). If we write p = p1p2 where p1, p2 are reduced, note that j(p1)
has a unique lift p′1 at w. Now p2p

′
1 is a reduced path which is not a circuit, otherwise ι(p2) = τ(p′1)

but ι(p2) = τ(p1) so this would mean that p1, p′1 are two distinct lifts of j(p̄1) at the same point, a
contradiction.

Now choose a shortest path q from u to p, suppose it meets p at some vertex x which divides p in
p1p2. Up to replacing p by p2p

′
1 as above, we may assume x = v. The path qp is reduced and not a

circuit.
Now j(qp)j(q̄) is a reduced circuit based at j(u), so its homotopy class is an element of π1(Γ). By

surjectivity of j∗ there exists a circuit s based at u, which we may assume to be reduced, such that
j(s) is homotopic to j(qp)j(q̄). Now both j(s) (as the image of a reduced path by an immersion) and
j(qp) are reduced, so they are in fact equal. This is a contradiction since the lift of j(pq)j(q̄) at u is
not a circuit.

We can now prove equivalence of the core and the folded rose.

Lemma 6.4: Let Y = Rk be the rose on k petals, whose fundamental group we identify to F(a1, . . . , ak).
Let H〈h1, . . . , hm〉 and let f : R̂l → Rk be the graph map constructed in Example 4.10 such that
f∗ : F(b1, . . . , bl) → Fk is the morphism de�ned by f∗(bi) = hi. Factor f as j ◦ fr ◦ . . . ◦ f1 where the
fi are foldings and j is an immersion ∆H → Rk.

Then ∆H is isomorphic to the core ΓH of the covering YH of Rk corresponding to H, and via this
isomorphism j is simply the restriction of the covering map YH → Rk.

Proof. Note that j∗(π1(∆H)) = H so by the general lifting lemma, j lifts to a graph map j̃ : ∆H → YH .
It is easy to see that j̃ must be an immersion. Note that j̃(∆H) is the core ΓH since it is the union
of lifts of reduced circuits in Rk corresponding to the generators of H. By Lemma 6.3, j̃ induces an
isomorphism of graphs between ∆H and ΓH , and j = f ◦ j̃ as required.
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Corollary 6.5: The graph ∆H obtained does not depend on the sequence of foldings chose, nor on the
generating set chosen for H to start with.

We also show

Lemma 6.6: YH − ΓH is a forest, each tree of which intersects ΓH in a single vertex.

In other words, one can construct ΓH from YH by "chopping o�" hanging trees.

Proof. If YH−ΓH is not a forest, one of its connected components is not a tree so it contains a reduced
circuit. This reduced circuit gives a reduced circuit at vH which is not in the core.

If one of the components intersects ΓH in two vertices, there is a reduced path in it joining the
two vertices, and this together with some paths in ΓH to the two vertices gives a reduced circuit not
contained in ΓH , a contradiction.

Here is one last characterization of the core:

Lemma 6.7: The core is the largest connected �nite subgraph of YH which contains vH and has no
valence 1 vertices (apart possibly the basepoint).

Proof. If there are two such subgraphs, their union still satis�es the same properties, hence if a maximal
one exists, it is unique. The core is connected and �nite, contains vH and has no valence 1 vertex
except possibly for the basepoint (each vertex is in a reduced circuit based at vH). To see that it is
maximal, suppose by contradiction that it was contained in a bigger subgraph C with all the right
properties. Then C−ΓH lives in YH −ΓH which is a forest each of whose tree intersects ΓH in a single
vertex, hence C can be obtained from ΓH by attaching �nite trees. But this contradicts the fact that
C has no valence 1 vertices, unless ΓH = C.

Remark 6.8: Let ∆H be the core associated to a �nitely generated subgroup H, and j : ∆H → Rn be
the corresponding immersion. If the base vertex v of ∆H has degree 1, we can remove the corresponding
edge: the graph obtained has at most one vertex of degree 1. Repeat until you get a graph ∆0

H all of
whose vertices have degree at least 2. The graph ∆0

H also immerses in Rn, and ∆H is the union of ∆0
H

with a path p joining v to a vertex u of ∆0
H . The image of π1(∆0

H , u) by j∗ is exactly [j(p)]H[j(p)]−1.
Thus up to replacing H by a conjugate, we may assume that the core graph has no vertices of

valence 1.

7 Finite index subgroups

Proposition 7.1: Let H be a subgroup of Fn. Then H has �nite index in F i� the core ∆H is equal
to the covering space YH associated to H.

Proof. We saw that the index of H in Fn is the cardinality of the preimage of the base vertex of Rn
by the covering map f : YH → Rn.

If ∆H = YH , in particular YH is �nite, so H has �nite index.
Conversely, if H has �nite index, YH is �nite (f−1(u) contains all the vertices of YH). But we

know that the core ∆H is the largest connected �nite subgraph of YH containing the base vertex v and
without valence 1 vertices (except possibly for the base vertex itself). Hence if YH 6= ∆H it must have
valence 1 vertices other than v. But this contradicts the fact that f : YH → Rn is a covering.

Example 7.2: Consider the subgroup H = 〈abā2, a2bā, ābā, bā3〉. We compute its core:
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We see that the map ∆H → Rn is a covering, so H has �nite index in F(a, b). In fact, the index is
3.

The index determines the rank of the subgroup.

Proposition 7.3: If H has index k in Fn, then rk(H) = k(n− 1) + 1.

Proof. We know that H is the fundamental group of the covering space YH which has exactly k vertices
(since all the vertices are in f−1(u)) and kn edges (each vertex has star of cardinality 2n since f is a
covering, and each edge appears exactly twice in the union of all the stars).

A tree on k vertices has k− 1 edges, so for any choice of maximal subtree for YH there are exactly
kn− (k − 1) = k(n− 1) + 1 edges outside of it - this implies that H has rank k(n− 1) + 1.

We now prove

Proposition 7.4: Fix m ∈ N∗. There are �nitely many subgroups of Fn with index m.

Proof. Each subgroup corresponds to a �nite cover Y → Rn where Y has m vertices. There are �nitely
many ways of drawing a covering (we need to draw mn colored edges joining the m vertices in such a
way that the star of each vertex is complete).

Corollary 7.5: Any �nite index subgroup of Fn contains a subgroup K which has �nite index and is
normal in Fn.

Proof. If H has index m, any conjugate gHg−1 also has index m (if h1H, . . . , hmH are the cosets of
H, then the (ghig

−1)gHg−1 are the cosets of gHg−1). Now the intersection of all the conjugates of H
is a normal subgroup. But it is in fact only a �nite intersection of subgroups of �nite index, hence it
has itself �nite index.

[ Recall that if K has �nite index in a group G and H is another subgroup, then H ∩K has �nite
index in H: let k1, . . . , kt be such that H ⊆ ∪ikiK, wlog we may assume that ki ∈ H for all i, so any
element in H can be written as h = kik for some k ∈ K, but then k = k−1

i h ∈ H so we have that
H ⊆

⋃
i ki(K ∩H). In particular, if H itself has �nite index, K ∩H has �nite index in G. ]

Recall that given a subgroup H of Fn = F(a1, . . . , an), it is not true in general that one can extend
a basis of H to a basis of Fn. (If this is the case, one says that H is a free factor of Fn)

The following shows that we can always pass to a �nite index subgroup in which this is true.

Proposition 7.6: (Marshall Hall's theorem) Let H be a �nitely generated subgroup of Fn = F(a1, . . . , an).
Then there exists a �nite index subgroup G of Fn such that H ≤ G, and any basis of H extends to a
basis of G.

Proof. Let ∆H be the core of H, and j : ∆H → Rn be the associated immersion. If it is a covering,
H has �nite index in Fn and we are done. If this is not a covering, we will add edges to ∆ to extend
it to a covering ΓH → Rn in the following way: for each vertex v of ∆H we need to add the "missing
edges" in the star of v.

For each edge e of Rn, there is at most one edge in each star of vertex of ∆H which is mapped to
e. Moreover, the number of edges in ∆H mapped to e and to ē are the same. Suppose that some star
St(v,∆H) does not contain an edge mapped to e ∈ E(Rn). Then there must be a vertex u of ∆H so
that St(u,∆H) does not contain an edge mapped to ē. In this case, we add a pair of opposite edges
e′, ē′ to ∆H with ι(e′) = v and ι(ē′) = u, and we extend j by setting j(e′) = e. We repeat until there
are no missing edges, we get a �nite graph ΓH and a covering map J : ΓH → Rn.

Now π1(ΓH , v) corresponds to a �nite index subgroup G of Fn. Moreover, ΓH was obtained from
∆H by adding edges, thus a maximal subtree of ∆H is also a maximal subtree of ΓH . This shows that
there is a basis of H which extends to a basis of G.

We can show something stronger:
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Proposition 7.7: Let H be a �nitely generated subgroup of Fn. Let g1, . . . , gk be elements of Fn which
do not lie in H. There exists a �nite index subgroup G of Fn which contains H and such that g1, . . . , gk
do not lie in G.

Proof. Let ∆H be the core ofH. Build a new graph Λ by attaching to ∆H k arcs of lengths |g1| , . . . , |gk|
respectively, and extend the immersion ∆H → Rn to a graph map Λ→ Rn by mapping these arcs to
the circuit representing the gi's.

We factor f through a sequence of foldings until we get an immersion j : Λ′ → Rn. Note that ∆H

embeds in Λ′, and that the arcs we added in Λ are not mapped to circuits in Λ′.
We extend Λ → Rn to a covering Λ̂ → Rn by adding single edges as in the previous proof. The

fundamental group G = π1(Λ̂, v) contains H as a free factor as before, and the elements gi are not
contained in G.

Corollary 7.8: Free groups are residually �nite, i.e. for any non trivial element g ∈ F there exists a
morphism θ from F to a �nite group such that θ(g) 6= 1.

Proof. Let H = 1, by the previous proposition there is a �nite index subgroup G of F which does not
contain g. By Corollary 7.5 we may assume K is normal. The morphism F → F/K does not kill g,
and F/K is �nite.

In fact we have proved something stronger

Corollary 7.9: For any �nitely generated subgroup H of F, and any element g of F which are not in
H there is a morphism θ from F to a �nite group such that θ(g) 6∈ θ(H).

8 Homomorphisms between �nitely generated free groups

Now consider a homomorphism φ : F(b1, . . . , bl) → F(a1, . . . , an), given by the images φ(bj) of the
generators of Fl.

We can represent φ as a graph map f : R̂l → Rn, where R̂l is the subdivided rose. We can then
factior f as j ◦ fs ◦ . . . ◦ f1 where the maps fi are foldings and j is an immersion ∆Imφ → Rn.

Proposition 8.1: The morphism φ is injective i� there are no folds on edges with the same endpoints.
It is surjective i� j is bijective.

Proof. We have φ = f∗ = j∗ ◦ (fs)∗ ◦ . . . ◦ (f1)∗.
We saw that the morphism (fi)∗ is always surjective, and in Exercise 2 you proved that it is an

isomorphism i� the edges in the folded pair have distinct endpoints. Finally, we saw that the morphism
associated to an immersion is always injective. This proves the �rst statement.

If j is an isomorphism of graphs then j∗ is an isomorphism of groups, in particular it is surjective
and hence so is φ. Conversely, if φ is surjective then j∗ is surjective. We proved in Lemma 6.3 that if
j∗ is surjective then j is globally injective. To see j must also be surjective, note that if j∗ is surjective
then H = Im(φ) = Fn, so the covering YH → Rn corresponding to H is in fact the identity. Thus ∆H

is equal to YH which is just Rn, this proves surjectivity of j.

We also show

Proposition 8.2: Let φ : F(b1, . . . , bl)→ F(a1, . . . , an) be a morphism. There exists a basis β1, . . . , βl
of F(b1, . . . , bl) such that for some index k in {1, . . . , l} we have that φ |〈β1,...,βk〉 is injective and
φ(βj) = 1 for j = k + 1, . . . , n.

Proof. As usual, we represent φ by f : R̂l → Rn. Note that a folding map corresponding to an
admissible pair (e, e′) with τ(e) = τ(e′) (folding of the second type) does not produce new admissible
pairs. Hence when we write f = j ◦ fs ◦ . . . ◦ f1, we may assume that the foldings of the second type
are all at the end of the sequence, i.e. that there exists some index t such that f1, . . . , ft are of the
�rst type, and ft+1, . . . , fs are of the second type.
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Consider the graph Λ obtained once all the foldings of the �rst type have been performed. We know
that the morphism (ft)∗◦. . .◦(f1)∗ is in fact an isomorphism between π1(R̂l, u) and π1(Λ, v). Thus, it is
enough to �nd a basis for π1(Λ, v) with the required properties under the morphism (j ◦fs ◦ . . .◦ft+1)∗.

Now consider the equivalence class on edges of Λ generated by e ∼ e′ i� e and e′ are folded by one
of the fj with j > t. If we pick a maximal subtree Λ0 of Λ, it contains at most one edge in every such
equivalence class. It also gives us a basis {γe1 , . . . , γel} for π1(Λ, v), where each ei is an edge of Λ−Λ0.
Note that if ei ∼ em, then (j ◦ fs ◦ . . . ◦ ft+1)∗(γei) = (j ◦ fs ◦ . . . ◦ ft+1)∗(γem).

Without loss of generality, we may assume that k ≤ m is such that e1, . . . , ek contains exactly one
representative of each equivalence class. We set β1 = γe1 , . . . , βk = γek , and for each m > k, if i ≤ k
is such that em ∼ ei, we let βm = γemγ

−1
ei . Clearly β1, . . . , βl is still a basis for π1(Λ, v). Moreover, for

each m > k we have (j ◦ fs ◦ f1)∗(βm) = 1. Finally, if Λ′ is the union of Λ0 with the edges e1, . . . , ek
and their opposites, it is easy to see that j ◦ fs ◦ . . . ◦ ft+1 restricts to an immersion on Λ′. Hence the
induced morphism (j ◦ fs ◦ . . . ◦ ft+1)∗ is injective on π1(Λ′, v) = 〈β1, . . . , βk〉.

9 Normal subgroups

Proposition 9.1: Let f : Y → X be a covering map between connected graphs. The action of the
automorphism group of the covering is transitive on the set f−1(u) i� the subgroup H = f∗(π1(Y, v))
is normal in π1(X,u).

Proof. Suppose the action is transitive on f−1(u). Let [p] ∈ π1(X,u) and [q] ∈ H. There is a unique
lift q̃ of q at v, and this lift is a circuit since [q] ∈ H.

Denote by y the end vertex of the unique lift of p based at v - we have f(y) = u. By transitivity
of the action of Aut(f) on f−1(u), there is an automorphism of the covering sending v to the vertex
y. This automorphism sends q̃ to a lift of q at y which is a circuit. We thus get that there is a lift of
[pqp̄] at v which is a circuit, hence [p][q][p]−1 lies in H. This shows H is normal.

For the other direction, suppose that H is normal. Then the action of π1(X,u) on the universal
covering X̃ → X factors through the covering map h : X̃ → Y : indeed, if [p1] and [p2] are two vertices
of X̃ that are identi�ed by h, there must be an element [q] of H such that [p2] = [q] · [p1] = [qp1]. Let
now [p] ∈ π1(X,u): we want to prove that h([p] · [p1]) = h([p] · [p2]). But [p] · [p2] = [pqp1] = [pqp̄pp1] =
[pqp̄] · ([p] · [p1]), and since H is normal, [pqp̄] = [p][q][p]−1 lies in H, so [p] · [p1] and [p] · [p2] have the
same image by h.

Hence if v′ ∈ f−1(u), let r be a path in Y from v to v: then f(r) is a circuit based at u in X, so
[f(r)] ∈ π1(X,u). Now if r̃ is the lift of r at ũ (where h(ũ) = v), its endpoint u′ is sent to v′ by h.
Moreover we have h(r̃) = r thus via the action of π1(X,u) on f−1(u), the element [f(r)] sends v to
v′.

Remark 9.2: This means that the covering is homogeneous, i.e. it "looks the same" from every lift
of the base vertex. In fact one can show that H is normal i� the automorphism group of the covering
is transitive on every �ber.

Using this we can get the following results on �nitely generated normal subgroups in free groups.

Proposition 9.3: If H is a �nitely generated normal subgroup of F = F(a1, . . . , an), then either H
has �nite index, or H is trivial.

Proof. We assume that H is non trivial. Consider the covering f : YH → Rn of the rose Rn corre-
sponding to H, denote by v the basepoint of YH . Since H is �nitely generated, we can de�ne its core
ΓH , and it is a �nite subgraph of YH .

We will prove that YH is �nite, so the index of H in F is �nite as desired. Let D denote the
diameter of the core ΓH . If YH is in�nite there exists a vertex y ∈ V (YH) which is at distance at
least D + 1 from the core ΓH (YH is a locally �nite graph). Thus the ball of radius D around y is
a tree, which is not the case of the ball of radius D around v - the group of automorphisms of the
covering f : YH → Rn is not transitive on the inverse image f−1(u) of the unique vertex u of Rn - this
contradicts normality of H.
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We also get

Proposition 9.4: Let H be a �nitely generated subgroup of Fn. Then H is normal i� ∆H → Rn
is a covering, and the automorphism group of the core graph ∆H (together with colouring of edges
representing the map ∆H → Rn) is transitive on vertices.

Proof. Suppose H is normal. In the proof of the preceding Proposition, we showed that the covering
YH associated to H must be a �nite graph. By Proposition 7.1 we get that in fact YH = ∆H .

Now we know that the group of automorphisms of the covering map f : YH = ∆H → Rn acts
transitively on f−1(u), but since u is the unique vertex of Rn, all the vertices of ∆H are in f−1(u).

Conversely, suppose that ∆H → Rn is a covering and that the group of automorphisms of the
colored graph ∆H is transitive on vertices - clearly, ∆H is the covering associated to H, and by
Proposition 9.1, we get that H is normal.

Example 9.5: Which of the following subgroups are normal?

1. H = 〈〉 in F(a, b, c)

2. H = 〈〉 in F(a, b)

10 Intersection of �nitely generated subgroups

De�nition 10.1: Let f1, f2 be maps of graphs Γi → Λ for i = 1, 2. A graph Γ0 with maps gi : Γ0 → Γi
is called the pullback of f1, f2 if f1 ◦ g1 = f2 ◦ g2, and for any graph ∆ and any pair h1 : ∆→ Γ1, h2 :
∆→ Γ2 of graph maps for which f1 ◦ h1 = f2 ◦ h2, there is a unique graph map φ : ∆→ Γ0 such that
hi = gi ◦ φ.
Remark 10.2: If the pullback exists, it is unique up to isomorphism. Indeed, any such other pullback
Γ′0 with maps h′1, h

′
2, we get graph maps φ : Γ′0 → Γ0 and φ′ : Γ0 → Γ with all the right commutations

properties. But by uniqueness we get that φ ◦ φ′ = Id.

Lemma 10.3: Let G0 be given by

• V (G0) = {(v1, v2) | vi ∈ V (Γi) such that f1(v1) = f2(v2)}

• E(G0) = {(e1, e2) | ei ∈ E(Γi) such that f1(e1) = f2(e2)};

• ι((e1, e2)) = (ι(e1), ι(e2));

• (e1, e2) = (ē1, ē2).

is a graph, and together with the maps g1, g2 given by the projections to the �rst and second coordinates,
it is the pullback for the pair f1, f2.

Proof. To check it is a graph is an easy exercise. Check that g1, g2 are graph maps - easy. Commutation
of the diagram is easy. Now if h1 : ∆ → Γ1, h2 : ∆ → Γ2 also satisfy these properties, a graph map
φ : ∆→ G0 such that hi = gi ◦ φ must be of the form φ(v) = (h1(v), h2(v)) and φ(e) = (h1(e), h2(e))
- this proves existence and uniqueness of φ.

Example 10.4: Let F = F(a, b) and H1 = 〈a2, ba〉, H2 = 〈ba, b3ab̄a〉. We �rst �nd the cores of H1, H2:

Then we construct the pullback
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Remark 10.5: As the example above shows, the pullback graph is not necessarily connected even if
the graphs themselves are connected.

Proposition 10.6: If f1, f2 are immersions representing the subgroups H1, H2 of F = π1(Λ, u), then
g1, g2 are immersions and the image by (fi ◦ gi)∗ of the fundamental group of the connected component
Γ0

0 of Γ0 containing the basepoint is the subgroup H1 ∩H2.

Proof. Let us check that g1, g2 are immersions. Suppose e, e′ is an admissible pair of edges of the
pullback Γ0 such that g1 = g′1 ◦ f where f : Γ0 → Γ′0 is the folding map associated to e, e′. Since
f2 ◦ g2 = f1 ◦ g1, and f2 is an immersion, we must have g2(e) = g2(e′), hence g2 = g′2 ◦ f . Thus we get
f2 ◦ g′2 = f1 ◦ g′1. By the universal property of Γ0 there exists a map h : Γ′0 → Γ0 such that g′i = gi ◦ h
thus gi = g′i ◦ f = gi ◦ (h ◦ f) but by uniqueness of the nmorphism φ in the de�nition of the pullback
we must have h ◦ f = Id which proves that f is an isomorphism of graph maps - a contradiction.

Now let a ∈ π1(Γ0
0, u0): its image by the embedding (fi ◦ gi)∗ lies in the image of the embedding

(fi)∗, i.e. in Hi for i = 1, 2. Conversely if a ∈ H1 ∩ H2, it is represented by a reduced circuit α in
Γ based at u of length m, and it lifts to a reduced circuit αi of length m in Γi based at ui for each
one of i = 1 and i = 2. Let Cm be the circuit graph on m edges: we have immersions ji : Cm → Γi
for i = 1, 2. By the universal property of the pullback, we get a graph map φ : Cm → Γ0 such that
hi = gi ◦ φ. This shows precisely that the circuits α1, α2 have a common lift at u0 in Γ0

0, which proves
that a ∈ π1(Γ0

0, u0).

We get the following immediate corollary

Corollary 10.7: (Howsons theorem) The intersection of two �nitely generated subgroups of a free
group is �nitely generated.

Proof. If Γ1,Γ2 are �nite graphs, their pullback is also �nite.

Proposition 10.8: (Hannah Neumann inequality) If H1, H2 are �nitely generated subgroups of a free
group F, we have

rk(H1 ∩H2)− 1 ≤ 2(rk(H1)− 1)(rk(H2)− 1)

Proof. First note that we can assume without loss of generality that the rank of the ambiant free group
is 2 (embed F in F2). Build the core graphs Γ1,Γ2 associated to H1, H2 together with the corresponding
immersions f1, f2. By Proposition 10.6, the core graph of H1 ∩ H2 is the connected component Γ0

0

of the pullback Γ0 of f1, f2 which contains the basepoint, and there are immersions gi : Γ0
0 → Γi for

i = 1, 2 such that f1 ◦ g1 = f2 ◦ g2.
Note that the degree of each vertex in Γi is at most 4. Moreover, by Remark 6.8 up to conjugating

both H1 and H2 by some element g we may assume that the core graph of H1 ∩H2 has no vertices of
valence 1. But there are immersions gi : Γ0

0 → Γi for i = 1, 2, so the base vertices in Γ1,Γ2 also have
degree at least 2.

Now recall that the rank of the fundamental group of a �nite graph is m − n + 1 where m is the
number of edges and n the number of vertices. In a graph where the degree of the vertices is bounded
by 4 we have that

m− n+ 1 = (n1 + 2n2 + 3n3 + 4n4)/2− (n1 + n2 + n3 + n4) + 1 = −n1/2 + n3/2 + n4 + 1

where ni is the number of vertices of degree i.
Denote by nji the number of vertices of valence i in Γj . In the pullback Γ0 we have exactly n

0
4 ≤ n1

4n
2
4

vertices of degree 4: indeed, the map induced by fi on star of a vertex of degree 4 is bijective, hence
two vertices of degree 4 give e vertex of degree 4 of the pullback. Now for vertices of degree 3, we have
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n0
3 ≤ n1

4n
2
3 + n1

3n
2
4 + n1

3n
2
3. We get

rk(H1 ∩H2)− 1 = n0
3/2 + n0

4

≤ 1

2
(n1

4n
2
3 + n1

3n
2
4 + n1

3n
2
3) + n1

4n
2
4

≤ 2(n1
4 +

1

2
n1

3)(n2
4 +

1

2
n2

3)

≤ 2(rk(H1)− 1)(rk(H2)− 1)

which proves the claim.

The Hannah Neumann conjecture, which held open for a long time, stated that the factor 2 in the
above inequality can be dropped. It was proved in 2011 independently by Mineyev and by Friedman.

11 Automorphisms of free groups

We consider the group Aut(Fn) of automorphisms of the free group Fn on n generators.

Theorem 11.1: (Nielsen generators for Aut(Fn)) Consider the set of automorphisms of Fn = F(a1, . . . , an)
containing all the automorphisms σ : Fn → Fn de�ned in one of the following way on the generators

(i) (Permutations of basis elements) σ(ai) = as(i) for some permutation s of 1, . . . , n;

(ii) (Sign changes) σ(ai) ∈ {ai, a−1
i } for each i;

(iii) (Change of maximal tree) there exists an index i such that σ(ai) ∈ {ai, a−1
i } and for j 6= i we

have σ(aj) ∈ {aj , a±1
i aj , aja

±1
i , a±1

i aja
±1
i }.

This set generates Aut(Fn).

Remark 11.2: It is clear that the maps given in the list are automorphisms. We call them elementary
automorphisms.

Corollary 11.3: The following set generates Aut(Fn):

(i) (Swapping two basis elements) σ(ai) = aj, σ(aj) = ai and σ(ak) = ak for all k 6= i, k 6= j;

(ii) (Sign changes) σ(ai) = a−1 and σ(ak) = ak for all k 6= i, k 6= j;

(iii) (Multiplication) σ(ai) = aiaj for some j 6= i, and σ(ak) = ak for all k 6= i.

Lemma 11.4: Let Γ be a �nite graph, and �x v ∈ V (Γ). Let T, T ′ two spanning trees, and α1, . . . , αn,
β1, . . . , βn respectively be bases associated to T, T ′. Then the automorphism σ : π1(Γ, v) → π1(Γ, v)
given by αi 7→ βi is a composition of elementary automorphisms.

Proof. Note that αi = [pieiqi] where ei is an edge not in T ,pi is the unique path in T from v to ι(ei)
and qi is the unique path in T from τ(ei) to v. Similarly, βi = [p′ifiq

′
i].

It is enough to consider the case where T ′ is obtained from T by 1. adding an edge ei which is in
T ′ but not in T and 2. removing an edge fj ∈ T − T ′ on the cyclically reduced loop of [p1e1q1] (there
must be such an edge since T ′ is a tree, and we take it in the orientation given by this loop). Up to
pre- and postcomposing σ by an automorphism of type (i) we may moreover assume i = j = 1.

Note now that β1 = [p′1f1q
′
1] = [p1e1q1] = αe1 . Now for i > 1, we look at the various possibility for

the paths p′i, q
′
i relative to the edge f , we see that βi ∈ {α±1

e1 αei , αeiα
±1
e1 , α

±1
e1 αeiα

∓1
e1 }.

We need another lemma

Lemma 11.5: Let Γ be a �nite graph, and let e, e′ be a pair of edges such that ι(e) = ι(e′) and
τ(e) 6= τ(e′). Let f : Γ→ ∆ be the associated folding map.

There exists spanning trees TΓ, T∆ of Γ,∆ and associated bases α1, . . . , αn and β1, . . . , βm such that
f∗ is of one of the following forms:
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• n = m and f∗(αi) = βi for all i.

• f∗(α1) = β1, and for any i > 1 we have f∗(αi) ∈ {βj , β±1
i βj , βjβ

±1
i , β±1

i βjβ
±1
i }

Proof. Suppose �rst that τ(e) 6= ι(e), τ(e′) 6= ι(e′). Then we can choose TΓ containing both e, e′, and
T∆ = f(TΓ) (this is still a tree, and by surjectivity of f it is a spanning tree). Then it is easy to see
that f∗ is of type (i).

Suppose now that τ(e) 6= ι(e), but τ(e′) = ι(e′). Choose TΓ containing e (but obviously not e′),
and T∆ = f(TΓ)− {f(e′)}. Then we see that if we choose the bases so that α1 corresponds to e′ and
β1 to f(e′), f∗ is of type (ii).

We can now prove Theorem 11.1:

Proof. Let φ : F(a1, . . . , an) → F(a1, . . . , an) be an automorphism, we represent it by a graph map
f : R̂n → Rn where R̂n is the rose subdivided according to the images of the generators ai as usual.

The map f can be written as j ◦ f1 ◦ . . . ◦ fr where the fk : Γk → Γk+1 are foldings and j is an
immersion, and because f∗ = φ is both injective and surjective, in fact j is an isomorphism and none
of the fk fold edges which have the same endpoints.

For each folding fk, apply Lemma 11.5 to get maximal subtrees T ′k of Γk and Tk+1 of Γk+1, as well
as associated bases, such that (fk)∗ is of type (i) or (ii) (note that in general Ti and T

′
i are distinct).

We identify for each k the fundamental group π1(Γk, vk) with Fn by denoting the basis associated to
Tk by a1, . . . , an. Denote by a

k
1 , . . . , a

k
n the basis associated to T ′k.

Thus there exists i such that the morphism (fk)∗ sends a′j to aj if j = i, and to one of aj ,

a±1
i aj , aja

±1
i , a±1

i aja
±1
i otherwise. Hence if σ is the automorphism de�ned by aj 7→ a′j , we get that

h = (fk)∗ ◦ σ is an elementary automorphism. By Lemma 11.4, we know that σ−1 is a product of
elementary automorphisms, hence so is (fk)∗ = h ◦ σ−1.

Since j is an isomorphism of graphs, j∗ is at most a permutation of the basis a1, . . . , an. This proves
the result.

12 Whitehead algorithm

This sectionreproduces arguments from Heusener and Weidmann "A remark on Whitehead's Lemma".

De�nition 12.1: Let F be the free group on a1, . . . , an, let g ∈ F. We say that a is primitive if it
can be extended to a basis of F, i.e. there is a basis g = g1, . . . , gn.

Question 6: How can we recognize if a word is primitive?

A useful tool is to look in the abelianization of the group: consider the quotient map q : F → Zn
whose kernel is the subgroup generated by commutators of elements. If g is primitive in F, then
q(g), q(g2), . . . , q(gn) must be a basis for Zn.
Example 12.2: Let g = [a, b] ∈ F(a, b). Then q(g) = 1 so g cannot be primitive. Let g = abab−1a, its
image by q is q(a)3 which is not part of a basis of Z2, hence g is not primitive.

However some elements which are not primitive may have image which is paert of a basis of Zn.
We will build an even �ner test for primitivity of elements.

De�nition 12.3: Let Γ be a graph endowed with a graph map Γ → Rn (alternatively, Γ is oriented
and labelled by elements of a1, . . . , an).

We say a reduced word w = aε1i1 . . . a
εm
im

is readable in Γ if there is a path e1 . . . em in Γ such that

the label of ej is a
εj
ij
.

The Whitehead graph Wh(Γ) associated to Γ is the graph on 2n vertices v+
i , v

−
i for 1 ≤ i ≤ n, with

an edge (vεii , v
εj
j ) if and only if the word aεii a

−εj
j is readable in Γ.

The Whitehead graph Wh(w) associated to a word w is the Whitehead graph of the cycle graph Cm
labelled by the letters of w.
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The following was originally proved by Whitehead, we present the proof given by Heusener and
Weidmann.

Theorem 12.4: If w is primitive and cyclically reduced, then Wh(w) is disconnected or has a cut
vertex.

(A cut vertex in a graph is a vertex whose complement is disconnected). Note that if some conjugate
of w is primitive, then w itself is primitive.

To prove the theorem, we will need some intermediate results. We �rst note

Remark 12.5: If Γ and Gamma′ are two oriented graphs labelled by a1, . . . , an, and h : Γ → Γ′ is a
graph map which respects orientation and labelling, then Wh(Γ) ⊆Wh(Γ′).

If Wh(Γ′) is disconnected or has a cut vertex, then so is Wh(Γ) - this follows from the fact that
they have the same vertex sets.

To prove Theorem ??, it is therefore enough to show that the cycle graph of a primitive element
maps (by a graph map respecting labellings) into a connected graph ∆ whose Whitehead graph is
disconnected or admits a cut vertex (in other words, that w is readable in a graph with a cut vertex).

De�nition 12.6: A graph ∆ endowed with orientation and labelling of the edges by a1, . . . , an is called
an almost-rose if its fundamental group has rank n, it has no valence 1 vertices, and it folds onto the
rose Rn by a single fold.

Lemma 12.7: If w is primitive and cyclically reduced then it is readable in an almost-rose.

Proof. Let w = w1, . . . , wn be a basis for Fn and let R̂n be the subdivided rose whose petals are labelled
by the reduced words w1, . . . , wn. There is a graph map f : R̂n → Rn, whose corresponding morphism
f∗ is the identity. We can factor f as j ◦ fr ◦ . . . ◦ f1 as usual, with fi : Γi → Γi+1 a folding map and j
an isomorphism. Note that since w is cyclically reduced every vertex in R̂n is adjacent to at least two
edges with distinct labels, hence this is true of all the graphs appearing in the sequence of foldings and
in particular they have no valence 1 vertex.

The graph Γr is therefore an almost rose. The word w is readable in R̂n, therefore it is readable in
Γr and we are done.

Lemma 12.8: The Whitehead graphs of almost roses have cut vertices.

Proof. We will in fact describe explicitly all possible almost roses: let ∆ be an almost rose, and let e, e′

be the edges folded to get a rose, and assume wlog that e, e′ are both labelled by a1. Since all edges
of a rose are loops, at least one of e, e′ is a loop. Since the rank of the fundamental group does not
decrease, e and e′ do not have the same endpoint. Thus we may assume e is a loop based at a vertex
u and e′ joins u to another vertex v. Since the rose has a unique vertex, u and v are the only vertices
of ∆, and since ∆ has no valence 1 vertex, there is at least one other edge adjacent to v.

Now it is easy to see that ∆ has n+ 1 edges, e1, . . . , en, e
′ where ei is labelled by ai, and there are

indices k, l such that 1 ≤ k ≤ l ≤ n, k < n and

• edges e1, . . . , ek are loops at u;

• edges ek+1, . . . , el and e
′ join u and v (orientations may vary, wlog we can assume it starts from

u and ends in v);

• edges el+1, . . . , en are loops at v.

Now we claim that v1 is a cut vertex of the Whitehead graph of ∆. Indeed, the induced subgraphs
on {v±1 , . . . , v

pm
k , v−k+1, . . . , v

−
l } and {v+

1 , v
+
k+1, . . . , v

+
l , v

±
l+1, . . . , v

pm
n } are complete graphs, and their

union is Wh(Γ). Since they have only the vertex v+
1 in common, it is a cut vertex of ∆.

Remark 12.9: We could have proved the more general result that if a set S with at least one cyclically
reduced element can be extended to a basis then the Whitehead graph of the rose subdivided with petals
labelled by the words in S has a cut vertex.
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